

CHEM 1210 - General Chemistry II

2022	Ω	α •
20122	Summer	Session

Total Class Sessions: 25 Class Sessions Per Week: 5

Total Weeks: 5

Class Session Length (Minutes): 145

Credit Hours: 4

Instructor: Staff Classroom: TBA Office Hours: TBA

Language: English

Course Description:

General Chemistry II is a continuation of General Chemistry I. The following topics will include in this course: Chemical Equilibrium, Acid—Base Equilibria, Additional Aqueous Equilibria, Electrochemistry, the Solid State, Organic Chemistry, Biochemistry, Nuclear Chemistry, Chemical Kinetics. Basic laboratory experiments supporting theoretical principles will also presented in this course, which include, introduction of the scientific method, experimental design, chemical instrumentation, data collection and analysis, and preparation of laboratory reports.

Learning Objectives:

Upon successfully completion of this course, students will be able to:

- ✓ Understand reaction rates and determine how the extent of reaction relates to the time elapsed and how a mechanism is related to the rate law
- ✓ Explain the concept of equilibrium, the equilibrium constant, solve problems using the concept of equilibrium
- ✓ Determine whether a substance is an acid or base, write acid base reactions, understand how a buffer solution works and explain the concept of pH
- ✓ Explain the concepts of enthalpy, entropy, and free energy and use it to solve problems and relate it to everyday occurrences
- ✓ Balance oxidation reduction reactions and relate these processes to electrochemical data
- ✓ Name simple organic compounds identify functional groups and relate organic chemistry to biochemical processes

Course Materials:

Chemistry: An Atoms Focused Approach, 3rd edition, Thomas R Gilbert, Rein V Kirss, Stacey Lowery Bretz, Natalie Foster

ISBN-13: 978-0393697452

Course Format and Requirements:

Material involves taking time to think things through, develop the knowledge (or process) and

practice this. It is also very helpful to test yourself on your knowledge development. Using the quiz or exam as a means to test if you have learned something could be too late to determine you still have a gap in knowledge. Remember, lecture is very important in seeing process and models and hearing concepts and their derivation and application BUT is not the beginning and end of learning. It would be unusual to learn something simply from sitting in lecture.

Course Assignments:

Attendance:

Attendance at all class sessions is required. You have to notify the instructor in advance of your absence. If you fail to attend class on a regular basis, your final course grade will be lowered. Likewise, you should arrive to class on time. Tardiness is disruptive and disrespectful to me and to your classmates. Please make every effort to arrive punctually.

Ouizzes:

There will be six quizzes in total. Short, in-class quizzes will test your comprehension of course materials. You are supposed to make adequate preparation before each quiz. You are not allowed to consult your classmates or read your textbook or handout during the quizzes. You should be well-prepared before the class. The lowest score will drop off.

Exams:

There will be three one-hour midterm exams and one final exam during the course. Exam questions may come from lecture, lab, the text, and/or homework and will be a mix of multiple choice, mathematical problems, and short answers. Please note that you must show your work on arithmetical problems for credit and partial credit. Students are required to take all exams, and there are NO MAKE-UP EXAMS.

Course Assessment:

Attendance	5%
Quizzes (5 out of 6)	15%
Midterm Exam 1	15%
Midterm Exam 2	15%
Midterm Exam 3	15%
Final Exam	35%
Total	100%

Grading Scale (percentage):

A+	A	A-	B+	В	В-	C+	C	C-	D+	D	D-	F
98-	93-	90-	88-	83-	80-	78-	73-	70-	68-	63-	60-	<60
100	97	92	89	87	82	79	77	72	69	67	62	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Chengdu University of Technology's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your learning.

Course Schedule:

Week	Topics	Assignments
Week One	Introduction to The Course	• Quiz 1
(Class 1~5)	Briefly Review the Content in General Chemistry I	
	Chemical Equilibrium: Equal but Opposite reaction	
	rates	
	The Dynamics of Chemical Equilibrium	
	Writing Equilibrium Constant Expressions	
	Relationships between Kc and Kp Values	
	Manipulating Equilibrium Constant Expressions	
	Equilibrium Constants and Reaction Quotients	
	Heterogeneous Equilibria	
Week Two	Acid-Base Equilibria: proton transfer in Biological	• Quiz 2
(Class	Systems	• Midterm exam 1
6~10)	Acids and Bases: A Balancing Act	
	Acid Strength and Molecular Structure Strong and	
	Weak Bases	
	> pH and the Autoionization of Water	
	Ka, Kb, and the Ionization of Weak Acids and	
	Bases	
	Calculating the pH of Acidic and Basic Solutions	
	Polyprotic Acids	
	Acidic and Basic Salts	
	Additional Aqueous Equilibria: Chemistry and the	
	Oceans	
	Ocean Acidification: Equilibrium under Stress	
	The Common-Ion Effect	

	pH Buffers	
	Indicators and Acid–Base Titrations	
	Lewis Acids and Bases	
	Formation of Complex Ions	
	Hydrated Metal Ions as Acids	
	Solubility Equilibria	
Week Three	• Electrochemistry: The Quest for Clean Energy	• Quiz 3
(Class	Running on Electricity	• Midterm exam 2
11~15)	Electrochemical Cells	
,	Standard Potentials	
	Chemical Energy and Electrical Work	
	➤ A Reference Point: The Standard Hydrogen	
	Electrode	
	The Effect of Concentration on E-cell	
	Relating Battery Capacity to Quantities of	
	Reactants	
	Corrosion: Unwanted Electrochemical Reactions	
	Electrolytic Cells and Rechargeable Batteries	
	Fuel Cells	
	• the Solid State: A particulate View	
	Structures of Metals	
	> Alloys	
	Metallic Bonds and Conduction Bands	
	Semiconductors Structures of Some	
	Crystalline Nonmetals	
	➤ Salt Crystals: Ionic Solids	
	Ceramics: Useful, Ancient Materials	
	X-ray Diffraction: How We Know Crystal	
	Structures	
Week Four	Organic Chemistry: Fuels, pharmaceuticals, and	• Quiz 4
(Class	modern materials	• Quiz 5
16~20)	Carbon: The Stuff of daily life	• Midterm exam 3
10 20)	> Alkanes	Whaterin exam 5
	Alkenes and Alkynes	
	> Aromatic Compounds	
	Amines	
	Alcohols, Ethers, and Reformulated Gasoline	
	Aldehydes, Ketones, Carboxylic Acids, Esters, and Amides	
	• Biochemistry: The Compounds of Life	
	Composition, Structure, and Function: Amino	
	Acids Protain Structure and Function	
	> Protein Structure and Function	
	Carbohydrates	

	➤ Lipids	
	Nucleotides and Nucleic Acids	
	From Biomolecules to Living Cells	
Week Five	• Nuclear Chemistry: the risks and Benefits	• Quiz 6
(class	➤ The age of radioactivity	 Final exam
21~25)	Decay Modes for Radionuclides	
	Rates of Radioactive Decay	
	Energy Changes in Radioactive Decay	
	Making New Elements	
	Fusion and the Origin of the Elements	
	Nuclear Fission	
	Measuring Radioactivity	
	Medical Applications of Radionuclides	
	Chemical Kinetics: Clearing the Air	
	Cars, Trucks, and Air Quality	
	Reaction Rates	
	Effect of Concentration on Reaction Rate	
	Reaction Rates, Temperature, and the Arrhenius	
	Equation	
	Reaction Mechanisms	
	Catalysts	